PCBTok’s Competently Constructed Alumina PCB
PCBTok’s Alumina PCB has a dedicated and thorough manufacturing process to ensure that it can competently perform during its designated operation and application.
- Several options for layering (1 to 40 layers).
- IPC Classes 2 and 3 have authorized all PCBs.
- In the facility, we employ about 500 skilled employees.
- We don’t set a minimum or maximum order quantity.
- Our knowledgeable staffs are available to help you day or night.
Excellently Made Alumina PCB Products by PCBTok
Our PCB products are carefully produced using the most advanced technologies and enhanced machinery to guarantee flawless PCB output.
We continuously strive to provide our consumers with the finest products that can withstand all sorts of demands and applications by constantly testing the item.
PCBTok’s primary mission is to offer our consumers outstanding services that they deserve; we always value the needs of our clients.
Choosing PCBTok is your best option in the market; we will satisfy all your needs.
We will continuously enhance our staff’s skills to ensure they will only provide you with the best possible products in the market for your specifications.
Alumina PCB By Feature
The Ceramic PCB we mainly deploy in this particular board is capable of operating at about 350°C, safe to integrate into high-density circuit tracing, and it has versatile packaging preventing moisture absorption.
The Aluminum Oxide PCB we specifically utilize in this board has enhanced durability due to its incorporated rigid and robust materials. In addition, it restricts outgassing, and it has exceptional comprehensive strength.
The Prototype PCB we use in this particular board offers more accuracy in the final output of the design since it can enable you to detect errors at its early phase. Therefore, it can significantly reduce future repair costs.
The DPC Ceramic PCB we employ in this particular board has excellent electrical insulation. It has better thermal conductivity, and excellent thermal control and can operate in high-temperature conditions.
The DBC Ceramic PCB we mainly utilize in this specific board is perfectly ideal for high-power applications due to the direct bond of the copper and the substrate and if the application requires high copper thickness.
The Copper Clad PCB that we expressly incorporated in this particular board is its high conductivity; thus, it can carry the voltage throughout the entire board without experiencing any overheating issues.
Alumina PCB By Surface Treatment (5)
Alumina PCB By Copper Thickness (5)
Benefits of Alumina PCB
Below are the primary advantages of utilizing this specific board:
- It is regarded to have exceptional electrical insulation.
- One of its characteristics is its extraordinary comprehensive strength.
- It has a thermal expansion of around 22 to 24 W/mk.
- In terms of its metal cost, it is relatively affordable.
- It features exceptional gliding properties and low density.
- In terms of high-frequency applications, it performs outstandingly.
- It possesses hard enough materials that make its thermal conductivity moderate.
- It features a High TG value at around 350°C to 1500°

Primary Structure of Alumina PCB
There are only three layers that compose this board; we have the following:
- Copper Foil Layer – We only utilize a chemically oxidized layer to maximize the efficiency of its peel strength.
- Dielectric Layer – In terms of its low thermal resistance, we deploy 50m to 200m. In addition, it has an anti-aging property.
- Aluminum Base Layer – It acts as the foundation layer; hence, it should be thermally conductive and withstand drilling and cutting.
- Aluminum Base Membrane – It is responsible for preventing the occurrence of damages that could happen between aluminum, scrape, and etch.
Disadvantages of an Alumina PCB
Despite the numerous benefits it can offer, it has some limitations. Here’s some of it:
- Material – If you opt for the ceramic selection, it can be susceptible to brittleness, potentially leading to breakage.
- Cost – It can be expensive to produce compared to the standard metallic PCB bases and FR4 base material.
However, these disadvantages can vary depending on the manufacturer’s capability. Moreover, we can provide you best affordable deals we have. Hence, we strongly suggest going for a manufacturer with extensive industry experience, such as PCBTok.

Manufacturing Premium Quality Alumina PCB is PCBTok’s Expertise


PCBTok is a highly competent worldwide manufacturer because we only produce high-quality products. In addition, we have more than a decade of experience in the industry; thus, we are capable of meeting all your specifications.
Furthermore, all of our personnel are highly trained and experienced. We are doing this to provide you with flawless and high-class Alumina PCB products.
All of our PCB products have undergone strict quality inspections and assurance. We are conducting this to solidify the performance of our items further. Additionally, we will always consider all your desired designs for your operation.
The satisfaction of our customers is what we consider success; hence, we are doing our best to fulfill all of your needs. Inquire today and grab our best deals.
Alumina PCB Fabrication
One of the crucial factors to consider in producing a quality Alumina PCB is necessarily looking out for its design specifications.
The first phase is the idea wherein the dimensions are discussed. Then, we have its diagram, wherein it has its component name, value, and rating.
We have a board block diagram as its third phase. Then, we have the component positioning phase, routing via first-pass, and the testing phase.
All of these mentioned phases are crucial in the final performance of your product; hence, we are performing all of these thoroughly.
Kindly message us for any inquiries you may have regarding this.
We want to provide our consumers with the best products; thus, we strictly perform quality inspections for our Alumina PCB.
PCBTok performs visual testing, in-circuit testing, automated optical inspection (AOI), and burn-in testing.
These are all the tests we conduct for this board; we are performing these tests on all our PCB products to ensure their performance.
Our dedication to providing our consumers with the best products has made us improve our testing protocols and upgrade our technologies.
Feel free to message us if you have any concerns about these tests.
OEM & ODM Alumina PCB Applications
Due to the capability of this board to operate flawlessly in high-frequency situations, they are highly preferred by almost all telecommunication devices.
One of the advantages of deploying this particular board in specific applications is its less water absorption rate; thus, they are ideal for solar cell devices.
Since this particular board is recognized for its high operating temperature that can withstand tremendous temperatures, they are utilized in power generation equipment.
Due to their superior capability and enhanced rigidity that can tolerate almost all concerns, they are widely deployed in amplification devices.
This particular board is recognized for its multilayer capability and outstanding thermal conductivity; hence, they are highly employed in automotive peripherals.
Alumina PCB Production Details As Following Up
- Production Facility
- PCB Capabilities
- Shipping Methods
- Payment Methods
- Send Us Inquiry
NO | Item | Technical Specification | ||||||
Standard | Advanced | |||||||
1 | Layer Count | 1-20 layers | 22-40 layer | |||||
2 | Base Material | KB、Shengyi、ShengyiSF305、FR408、FR408HR、IS410、FR406、GETEK、370HR、IT180A、Rogers4350、Rogers400、PTFE Laminates(Rogers series、Taconic series、Arlon series、Nelco series)、Rogers/Taconic/Arlon/Nelco laminate with FR-4 material(including partial Ro4350B hybrid laminating with FR-4) | ||||||
3 | PCB Type | Rigid PCB/FPC/Flex-Rigid | Backplane、HDI、High multi-layer blind&buried PCB、Embedded Capacitance、Embedded resistance board 、Heavy copper power PCB、Backdrill. | |||||
4 | Lamination type | Blind&buried via type | Mechanical blind&burried vias with less than 3 times laminating | Mechanical blind&burried vias with less than 2 times laminating | ||||
HDI PCB | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | ||||||
5 | Finished Board Thickness | 0.2-3.2mm | 3.4-7mm | |||||
6 | Minimum Core Thickness | 0.15mm(6mil) | 0.1mm(4mil) | |||||
7 | Copper Thickness | Min. 1/2 OZ, Max. 4 OZ | Min. 1/3 OZ, Max. 10 OZ | |||||
8 | PTH Wall | 20um(0.8mil) | 25um(1mil) | |||||
9 | Maximum Board Size | 500*600mm(19”*23”) | 1100*500mm(43”*19”) | |||||
10 | Hole | Min laser drilling size | 4mil | 4mil | ||||
Max laser drilling size | 6mil | 6mil | ||||||
Max aspect ratio for Hole plate | 10:1(hole diameter>8mil) | 20:1 | ||||||
Max aspect ratio for laser via filling plating | 0.9:1(Depth included copper thickness) | 1:1(Depth included copper thickness) | ||||||
Max aspect ratio for mechanical depth- control drilling board(Blind hole drilling depth/blind hole size) |
0.8:1(drilling tool size≥10mil) | 1.3:1(drilling tool size≤8mil),1.15:1(drilling tool size≥10mil) | ||||||
Min. depth of Mechanical depth-control(back drill) | 8mil | 8mil | ||||||
Min gap between hole wall and conductor (None blind and buried via PCB) |
7mil(≤8L),9mil(10-14L),10mil(>14L) | 5.5mil(≤8L),6.5mil(10-14L),7mil(>14L) | ||||||
Min gap between hole wall conductor (Blind and buried via PCB) | 8mil(1 times laminating),10mil(2 times laminating), 12mil(3 times laminating) | 7mil(1 time laminating), 8mil(2 times laminating), 9mil(3 times laminating) | ||||||
Min gab between hole wall conductor(Laser blind hole buried via PCB) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | ||||||
Min space between laser holes and conductor | 6mil | 5mil | ||||||
Min space between hole walls in different net | 10mil | 10mil | ||||||
Min space between hole walls in the same net | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | ||||||
Min space bwteen NPTH hole walls | 8mil | 8mil | ||||||
Hole location tolerance | ±2mil | ±2mil | ||||||
NPTH tolerance | ±2mil | ±2mil | ||||||
Pressfit holes tolerance | ±2mil | ±2mil | ||||||
Countersink depth tolerance | ±6mil | ±6mil | ||||||
Countersink hole size tolerance | ±6mil | ±6mil | ||||||
11 | Pad(ring) | Min Pad size for laser drillings | 10mil(for 4mil laser via),11mil(for 5mil laser via) | 10mil(for 4mil laser via),11mil(for 5mil laser via) | ||||
Min Pad size for mechanical drillings | 16mil(8mil drillings) | 16mil(8mil drillings) | ||||||
Min BGA pad size | HASL:10mil, LF HASL:12mil, other surface technics are 10mil(7mil is ok for flash gold) | HASL:10mil, LF HASL:12mil, other surface technics are 7mi | ||||||
Pad size tolerance(BGA) | ±1.5mil(pad size≤10mil);±15%(pad size>10mil) | ±1.2mil(pad size≤12mil);±10%(pad size≥12mil) | ||||||
12 | Width/Space | Internal Layer | 1/2OZ:3/3mil | 1/2OZ:3/3mil | ||||
1OZ: 3/4mil | 1OZ: 3/4mil | |||||||
2OZ: 4/5.5mil | 2OZ: 4/5mil | |||||||
3OZ: 5/8mil | 3OZ: 5/8mil | |||||||
4OZ: 6/11mil | 4OZ: 6/11mil | |||||||
5OZ: 7/14mil | 5OZ: 7/13.5mil | |||||||
6OZ: 8/16mil | 6OZ: 8/15mil | |||||||
7OZ: 9/19mil | 7OZ: 9/18mil | |||||||
8OZ: 10/22mil | 8OZ: 10/21mil | |||||||
9OZ: 11/25mil | 9OZ: 11/24mil | |||||||
10OZ: 12/28mil | 10OZ: 12/27mil | |||||||
External Layer | 1/3OZ:3.5/4mil | 1/3OZ:3/3mil | ||||||
1/2OZ:3.9/4.5mil | 1/2OZ:3.5/3.5mil | |||||||
1OZ: 4.8/5mil | 1OZ: 4.5/5mil | |||||||
1.43OZ(positive):4.5/7 | 1.43OZ(positive):4.5/6 | |||||||
1.43OZ(negative ):5/8 | 1.43OZ(negative ):5/7 | |||||||
2OZ: 6/8mil | 2OZ: 6/7mil | |||||||
3OZ: 6/12mil | 3OZ: 6/10mil | |||||||
4OZ: 7.5/15mil | 4OZ: 7.5/13mil | |||||||
5OZ: 9/18mil | 5OZ: 9/16mil | |||||||
6OZ: 10/21mil | 6OZ: 10/19mil | |||||||
7OZ: 11/25mil | 7OZ: 11/22mil | |||||||
8OZ: 12/29mil | 8OZ: 12/26mil | |||||||
9OZ: 13/33mil | 9OZ: 13/30mil | |||||||
10OZ: 14/38mil | 10OZ: 14/35mil | |||||||
13 | Dimension Tolerance | Hole Position | 0.08 ( 3 mils) | |||||
Conductor Width(W) | 20% Deviation of Master A/W |
1mil Deviation of Master A/W |
||||||
Outline Dimension | 0.15 mm ( 6 mils) | 0.10 mm ( 4 mils) | ||||||
Conductors & Outline ( C – O ) |
0.15 mm ( 6 mils) | 0.13 mm ( 5 mils) | ||||||
Warp and Twist | 0.75% | 0.50% | ||||||
14 | Solder Mask | Max drilling tool size for via filled with Soldermask (single side) | 35.4mil | 35.4mil | ||||
Soldermask color | Green, Black, Blue, Red, White, Yellow,Purple matte/glossy | |||||||
Silkscreen color | White, Black,Blue,Yellow | |||||||
Max hole size for via filled with Blue glue aluminium | 197mil | 197mil | ||||||
Finish hole size for via filled with resin | 4-25.4mil | 4-25.4mil | ||||||
Max aspect ratio for via filled with resin board | 8:1 | 12:1 | ||||||
Min width of soldermask bridge | Base copper≤0.5 oz、Immersion Tin: 7.5mil(Black), 5.5mil(Other color) , 8mil( on copper area) | |||||||
Base copper≤0.5 oz、Finish treatment not Immersion Tin : 5.5 mil(Black,extremity 5mil), 4mil(Other color,extremity 3.5mil) , 8mil( on copper area |
||||||||
Base coppe 1 oz: 4mil(Green), 5mil(Other color) , 5.5mil(Black,extremity 5mil),8mil( on copper area) | ||||||||
Base copper 1.43 oz: 4mil(Green), 5.5mil(Other color) , 6mil(Black), 8mil( on copper area) | ||||||||
Base copper 2 oz-4 oz: 6mil, 8mil( on copper area) | ||||||||
15 | Surface Treatment | Lead free | Flash gold(electroplated gold)、ENIG、Hard gold、Flash gold、HASL Lead free、OSP、ENEPIG、Soft gold、Immersion silver、Immersion Tin、ENIG+OSP,ENIG+Gold finger,Flash gold(electroplated gold)+Gold finger,Immersion silver+Gold finger,Immersion Tin+Gold finge | |||||
Leaded | Leaded HASL | |||||||
Aspect ratio | 10:1(HASL Lead free、HASL Lead、ENIG、Immersion Tin、Immersion silver、ENEPIG);8:1(OSP) | |||||||
Max finished size | HASL Lead 22″*39″;HASL Lead free 22″*24″;Flash gold 24″*24″;Hard gold 24″*28″;ENIG 21″*27″;Flash gold(electroplated gold) 21″*48″;Immersion Tin 16″*21″;Immersion silver 16″*18″;OSP 24″*40″; | |||||||
Min finished size | HASL Lead 5″*6″;HASL Lead free 10″*10″;Flash gold 12″*16″;Hard gold 3″*3″;Flash gold(electroplated gold) 8″*10″;Immersion Tin 2″*4″;Immersion silver 2″*4″;OSP 2″*2″; | |||||||
PCB thickness | HASL Lead 0.6-4.0mm;HASL Lead free 0.6-4.0mm;Flash gold 1.0-3.2mm;Hard gold 0.1-5.0mm;ENIG 0.2-7.0mm;Flash gold(electroplated gold) 0.15-5.0mm;Immersion Tin 0.4-5.0mm;Immersion silver 0.4-5.0mm;OSP 0.2-6.0mm | |||||||
Max high to gold finger | 1.5inch | |||||||
Min space between gold fingers | 6mil | |||||||
Min block space to gold fingers | 7.5mil | |||||||
16 | V-Cutting | Panel Size | 500mm X 622 mm ( max. ) | 500mm X 800 mm ( max. ) | ||||
Board Thickness | 0.50 mm (20mil) min. | 0.30 mm (12mil) min. | ||||||
Remain Thickness | 1/3 board thickness | 0.40 +/-0.10mm( 16+/-4 mil ) | ||||||
Tolerance | ±0.13 mm(5mil) | ±0.1 mm(4mil) | ||||||
Groove Width | 0.50 mm (20mil) max. | 0.38 mm (15mil) max. | ||||||
Groove to Groove | 20 mm (787mil) min. | 10 mm (394mil) min. | ||||||
Groove to Trace | 0.45 mm(18mil) min. | 0.38 mm(15mil) min. | ||||||
17 | Slot | Slot size tol.L≥2W | PTH Slot: L:+/-0.13(5mil) W:+/-0.08(3mil) | PTH Slot: L:+/-0.10(4mil) W:+/-0.05(2mil) | ||||
NPTH slot(mm) L+/-0.10 (4mil) W:+/-0.05(2mil) | NPTH slot(mm) L:+/-0.08 (3mil) W:+/-0.05(2mil) | |||||||
18 | Min Spacing from hole edge to hole edge | 0.30-1.60 (Hole Diameter) | 0.15mm(6mil) | 0.10mm(4mil) | ||||
1.61-6.50 (Hole Diameter) | 0.15mm(6mil) | 0.13mm(5mil) | ||||||
19 | Min spacing between hole edge to circuitry pattern | PTH hole: 0.20mm(8mil) | PTH hole: 0.13mm(5mil) | |||||
NPTH hole: 0.18mm(7mil) | NPTH hole: 0.10mm(4mil) | |||||||
20 | Image transfer Registration tol | Circuit pattern vs.index hole | 0.10(4mil) | 0.08(3mil) | ||||
Circuit pattern vs.2nd drill hole | 0.15(6mil) | 0.10(4mil) | ||||||
21 | Registration tolerance of front/back image | 0.075mm(3mil) | 0.05mm(2mil) | |||||
22 | Multilayers | Layer-layer misregistration | 4layers: | 0.15mm(6mil)max. | 4layers: | 0.10mm(4mil) max. | ||
6layers: | 0.20mm(8mil)max. | 6layers: | 0.13mm(5mil) max. | |||||
8layers: | 0.25mm(10mil)max. | 8layers: | 0.15mm(6mil) max. | |||||
Min. Spacing from Hole Edge to Innerlayer Pattern | 0.225mm(9mil) | 0.15mm(6mil) | ||||||
Min.Spacing from Outline to Innerlayer Pattern | 0.38mm(15mil) | 0.225mm(9mil) | ||||||
Min. board thickness | 4layers:0.30mm(12mil) | 4layers:0.20mm(8mil) | ||||||
6layers:0.60mm(24mil) | 6layers:0.50mm(20mil) | |||||||
8layers:1.0mm(40mil) | 8layers:0.75mm(30mil) | |||||||
Board thickness tolerance | 4layers:+/-0.13mm(5mil) | 4layers:+/-0.10mm(4mil) | ||||||
6layers:+/-0.15mm(6mil) | 6layers:+/-0.13mm(5mil) | |||||||
8-12 layers:+/-0.20mm (8mil) | 8-12 layers:+/-0.15mm (6mil) | |||||||
23 | Insulation Resistance | 10KΩ~20MΩ(typical:5MΩ) | ||||||
24 | Conductivity | <50Ω(typical:25Ω) | ||||||
25 | Test voltage | 250V | ||||||
26 | Impedance control | ±5ohm(<50ohm), ±10%(≥50ohm) |
PCBTok offers flexible shipping methods for our customers, you may choose from one of the methods below.
1. DHL
DHL offers international express services in over 220 countries.
DHL partners with PCBTok and offers very competitive rates to customers of PCBTok.
It normally takes 3-7 business days for the package to be delivered around the world.
2. UPS
UPS gets the facts and figures about the world’s largest package delivery company and one of the leading global providers of specialized transportation and logistics services.
It normally takes 3-7 business days to deliver a package to most of the addresses in the world.
3. TNT
TNT has 56,000 employees in 61 countries.
It takes 4-9 business days to deliver the packages to the hands
of our customers.
4. FedEx
FedEx offers delivery solutions for customers around the world.
It takes 4-7 business days to deliver the packages to the hands
of our customers.
5. Air, Sea/Air, and Sea
If your order is of large volume with PCBTok, you can also choose
to ship via air, sea/air combined, and sea when necessary.
Please contact your sales representative for shipping solutions.
Note: if you need others, please contact your sales representative for shipping solutions.
You can use the following payment methods:
Telegraphic Transfer(TT): A telegraphic transfer (TT) is an electronic method of transferring funds utilized primarily for overseas wire transactions. It’s very convenient to transfer.
Bank/Wire transfer: To pay by wire transfer using your bank account, you need to visit your nearest bank branch with the wire transfer information. Your payment will be completed 3-5 business days after you have finished the money transfer.
Paypal: Pay easily, fast and secure with PayPal. many other credit and debit cards via PayPal.
Credit Card: You can pay with a credit card: Visa, Visa Electron, MasterCard, Maestro.