Excellently Developed Solidworks PCB by PCBTok
In simple terms, the Solidworks PCB is essentially a collection of tools made to make it possible to engage effectively and collaboratively with mechanical design.
PCBTok has over five hundred personnel deployed in our facility to produce a quality PCB product efficiently. Additionally, we have over twelve years of professional experience.
In addition, we do not require specific order quantities for new orders, offer 1 to 40 different layer options for your boards, and conduct complete E-Test and AOI.
Grab our very own Solidworks PCB today and get a chance to avail our best deals!
PCBTok is Known for Providing Superior Solidworks PCBs
We have been producing top-tier Solidworks PCBs in the market for over twelve years; we offer various services depending on your specifications.
If you’re seeking a skilled, reliable, and experienced manufacturer, then look no further since PCBTok has already established its performance worldwide.
Our engineers can provide you with a product that performs better even with the presence of moisture, heat, chemical, and other harmful substances.
PCBTok continuously provides its customers with top-tier performing products.
Do not hesitate to message us with any questions about PCBs. Also, you can send us your designs and specifications, and we’ll work it out for you.
Solidworks PCB By Feature
The Single-Sided PCB that we mainly run through this software can be an ideal option if seeking to reduce cost, especially for high-volume orders. Moreover, they can be applied to power supplies and simple LED lighting.
The Double-Sided PCB that we mainly run through this software offers enhanced circuit density and improved flexibility to the designers. Also, it can be deployed in industrial controls, UPS systems, and automotive.
The Multilayer PCB that we mainly run through this software has gained popularity in the medical industry due to its compact design and excellent functionality. Some of the medical devices are X-Ray and Heart Monitors.
The Rigid PCB that we mainly run through this software offers low electric noise, thus, leading to low radiation emission. Moreover, it can be easily maintained and repaired since it has well-organized signal paths.
The Flexible PCB that we mainly run through this software has minimal risk of wire connection failure; hence, it has boosted its overall functionality and reliability. Also, they are widely used in consumer electronics.
What is Solidworks PCB?
Solidworks PCB is a board designing instrument included in a Solidworks 3D design program. It is software that Altium powers. As a component of the individual setup, Solidworks Installation Manager performs the configuration.
An electrical engineer can modify a printed circuit board with Solidworks PCB and publish those modifications to a cloud setup. An electrical engineer can view the modified circuit board pulled from the source by a mechanical engineer using the Solidworks program, assess the alterations, conduct more adjustments, and then submit the design back to the source.
Additionally, Solidworks PCB Services, which controls the source on a cloud server, must be installed to permit this interaction. Inquire today for further details!

Significant Features of Solidworks PCB
One of the crucial features of a Solidworks PCB is that it is the most advanced PCB Design Software that offers flawless performance.
Some of its other essential characteristics are as follows:
- Completing designs swiftly and efficiently with the help of a sophisticated PCB plan motor is feasible. Starting from constant 3D leeway verification to comprehensive plan rule inspections, you have all you need for your creative ideas.
- Due to the UI’s predictability and intuitiveness, you may start working immediately. Seamless interaction between schematic modification and board design will make you better relevant.
Please inquire with us today, and grab your quality Solidworks PCB products!
Difference Between Solidworks PCB and CircuitWorks
Generally, CircuitWorks is another PCB Designing Software similar to Solidworks. However, we’d like to discuss their dissimilarities and what works for you the most.
- Solidworks – Generating schematics and designs for PCBs is possible with this fully featured PCB plan programming application. The ideal option for a newly developed product program is Solidworks; it can assist with anything you require from start to finish. It can fully render the PCB from parts, apertures, connectors, and silkscreens in three dimensions.
- CircuitWorks – It serves as a conduit via which you can revisit Solidworks PCB designs that were previously created using ECAD or other planning tools. Another intermediary record setup, IDF, is required for it to function.
Feel free to message us if you have any questions about these two.

Go for PCBTok's Outstanding Solidworks PCB


PCBTok proudly offers outstanding Solidworks PCBs in the market; we have over twelve years of experience in this field and are highly capable of meeting your demands.
Our Solidworks in PCBTok offers the following features; powerful design technology and design engine, streamlined schematic editing setting, and an easy-to-use interface.
We have adequate experienced personnel to handle all of your PCB specifications efficiently. In addition, we are an ISO-certified company; thus, you can rest assured that we will only provide quality, flawless, and efficient products.
Furthermore, we are capable of customizing this product for your purposes; Designs, Surface Finish, PCB Size, PCB Layers, Solder Mask, and other configurations.
Place an order today! We’ll be delighted to put your needs into reality!
Solidworks PCB Fabrication
As mentioned previously, Solidworks can aid in reducing the complexity of the PCB designing process through its advanced features.
Hence, we’d like to drop some of its advantages. First, it can examine, validate, and verify 3D clearance instantaneously.
Second, its output file can be opened with other designer programs. Third, it offers an extensive library that can be integrated into projects.
Finally, examining mixed signals and differentiating analog and digital circuits from the schematic builders is possible through SPICE.
Get in touch with us immediately if you have any concerns about this.
Even though Solidworks offers countless advantages due to its features and capabilities, it still possesses a few cons.
The first downside of utilizing this software is that it necessitates highly configured system requirements; hence, it can be slow and lag in operating.
The Second drawback of using this software is that it can be difficult to learn due to its complex interface; it requires a passion for learning.
All of these limitations wouldn’t be a hindrance because we can perform the designing process for you if you demand us to do so.
To learn how this works, kindly get in touch with us.
Solidworks PCB Production Details As Following Up
- Production Facility
- PCB Capabilities
- Shipping Methods
- Payment Methods
- Send Us Inquiry
NO | Item | Technical Specification | ||||||
Standard | Advanced | |||||||
1 | Layer Count | 1-20 layers | 22-40 layer | |||||
2 | Base Material | KB、Shengyi、ShengyiSF305、FR408、FR408HR、IS410、FR406、GETEK、370HR、IT180A、Rogers4350、Rogers400、PTFE Laminates(Rogers series、Taconic series、Arlon series、Nelco series)、Rogers/Taconic/Arlon/Nelco laminate with FR-4 material(including partial Ro4350B hybrid laminating with FR-4) | ||||||
3 | PCB Type | Rigid PCB/FPC/Flex-Rigid | Backplane、HDI、High multi-layer blind&buried PCB、Embedded Capacitance、Embedded resistance board 、Heavy copper power PCB、Backdrill. | |||||
4 | Lamination type | Blind&buried via type | Mechanical blind&burried vias with less than 3 times laminating | Mechanical blind&burried vias with less than 2 times laminating | ||||
HDI PCB | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | ||||||
5 | Finished Board Thickness | 0.2-3.2mm | 3.4-7mm | |||||
6 | Minimum Core Thickness | 0.15mm(6mil) | 0.1mm(4mil) | |||||
7 | Copper Thickness | Min. 1/2 OZ, Max. 4 OZ | Min. 1/3 OZ, Max. 10 OZ | |||||
8 | PTH Wall | 20um(0.8mil) | 25um(1mil) | |||||
9 | Maximum Board Size | 500*600mm(19”*23”) | 1100*500mm(43”*19”) | |||||
10 | Hole | Min laser drilling size | 4mil | 4mil | ||||
Max laser drilling size | 6mil | 6mil | ||||||
Max aspect ratio for Hole plate | 10:1(hole diameter>8mil) | 20:1 | ||||||
Max aspect ratio for laser via filling plating | 0.9:1(Depth included copper thickness) | 1:1(Depth included copper thickness) | ||||||
Max aspect ratio for mechanical depth- control drilling board(Blind hole drilling depth/blind hole size) |
0.8:1(drilling tool size≥10mil) | 1.3:1(drilling tool size≤8mil),1.15:1(drilling tool size≥10mil) | ||||||
Min. depth of Mechanical depth-control(back drill) | 8mil | 8mil | ||||||
Min gap between hole wall and conductor (None blind and buried via PCB) |
7mil(≤8L),9mil(10-14L),10mil(>14L) | 5.5mil(≤8L),6.5mil(10-14L),7mil(>14L) | ||||||
Min gap between hole wall conductor (Blind and buried via PCB) | 8mil(1 times laminating),10mil(2 times laminating), 12mil(3 times laminating) | 7mil(1 time laminating), 8mil(2 times laminating), 9mil(3 times laminating) | ||||||
Min gab between hole wall conductor(Laser blind hole buried via PCB) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | ||||||
Min space between laser holes and conductor | 6mil | 5mil | ||||||
Min space between hole walls in different net | 10mil | 10mil | ||||||
Min space between hole walls in the same net | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | ||||||
Min space bwteen NPTH hole walls | 8mil | 8mil | ||||||
Hole location tolerance | ±2mil | ±2mil | ||||||
NPTH tolerance | ±2mil | ±2mil | ||||||
Pressfit holes tolerance | ±2mil | ±2mil | ||||||
Countersink depth tolerance | ±6mil | ±6mil | ||||||
Countersink hole size tolerance | ±6mil | ±6mil | ||||||
11 | Pad(ring) | Min Pad size for laser drillings | 10mil(for 4mil laser via),11mil(for 5mil laser via) | 10mil(for 4mil laser via),11mil(for 5mil laser via) | ||||
Min Pad size for mechanical drillings | 16mil(8mil drillings) | 16mil(8mil drillings) | ||||||
Min BGA pad size | HASL:10mil, LF HASL:12mil, other surface technics are 10mil(7mil is ok for flash gold) | HASL:10mil, LF HASL:12mil, other surface technics are 7mi | ||||||
Pad size tolerance(BGA) | ±1.5mil(pad size≤10mil);±15%(pad size>10mil) | ±1.2mil(pad size≤12mil);±10%(pad size≥12mil) | ||||||
12 | Width/Space | Internal Layer | 1/2OZ:3/3mil | 1/2OZ:3/3mil | ||||
1OZ: 3/4mil | 1OZ: 3/4mil | |||||||
2OZ: 4/5.5mil | 2OZ: 4/5mil | |||||||
3OZ: 5/8mil | 3OZ: 5/8mil | |||||||
4OZ: 6/11mil | 4OZ: 6/11mil | |||||||
5OZ: 7/14mil | 5OZ: 7/13.5mil | |||||||
6OZ: 8/16mil | 6OZ: 8/15mil | |||||||
7OZ: 9/19mil | 7OZ: 9/18mil | |||||||
8OZ: 10/22mil | 8OZ: 10/21mil | |||||||
9OZ: 11/25mil | 9OZ: 11/24mil | |||||||
10OZ: 12/28mil | 10OZ: 12/27mil | |||||||
External Layer | 1/3OZ:3.5/4mil | 1/3OZ:3/3mil | ||||||
1/2OZ:3.9/4.5mil | 1/2OZ:3.5/3.5mil | |||||||
1OZ: 4.8/5mil | 1OZ: 4.5/5mil | |||||||
1.43OZ(positive):4.5/7 | 1.43OZ(positive):4.5/6 | |||||||
1.43OZ(negative ):5/8 | 1.43OZ(negative ):5/7 | |||||||
2OZ: 6/8mil | 2OZ: 6/7mil | |||||||
3OZ: 6/12mil | 3OZ: 6/10mil | |||||||
4OZ: 7.5/15mil | 4OZ: 7.5/13mil | |||||||
5OZ: 9/18mil | 5OZ: 9/16mil | |||||||
6OZ: 10/21mil | 6OZ: 10/19mil | |||||||
7OZ: 11/25mil | 7OZ: 11/22mil | |||||||
8OZ: 12/29mil | 8OZ: 12/26mil | |||||||
9OZ: 13/33mil | 9OZ: 13/30mil | |||||||
10OZ: 14/38mil | 10OZ: 14/35mil | |||||||
13 | Dimension Tolerance | Hole Position | 0.08 ( 3 mils) | |||||
Conductor Width(W) | 20% Deviation of Master A/W |
1mil Deviation of Master A/W |
||||||
Outline Dimension | 0.15 mm ( 6 mils) | 0.10 mm ( 4 mils) | ||||||
Conductors & Outline ( C – O ) |
0.15 mm ( 6 mils) | 0.13 mm ( 5 mils) | ||||||
Warp and Twist | 0.75% | 0.50% | ||||||
14 | Solder Mask | Max drilling tool size for via filled with Soldermask (single side) | 35.4mil | 35.4mil | ||||
Soldermask color | Green, Black, Blue, Red, White, Yellow,Purple matte/glossy | |||||||
Silkscreen color | White, Black,Blue,Yellow | |||||||
Max hole size for via filled with Blue glue aluminium | 197mil | 197mil | ||||||
Finish hole size for via filled with resin | 4-25.4mil | 4-25.4mil | ||||||
Max aspect ratio for via filled with resin board | 8:1 | 12:1 | ||||||
Min width of soldermask bridge | Base copper≤0.5 oz、Immersion Tin: 7.5mil(Black), 5.5mil(Other color) , 8mil( on copper area) | |||||||
Base copper≤0.5 oz、Finish treatment not Immersion Tin : 5.5 mil(Black,extremity 5mil), 4mil(Other color,extremity 3.5mil) , 8mil( on copper area |
||||||||
Base coppe 1 oz: 4mil(Green), 5mil(Other color) , 5.5mil(Black,extremity 5mil),8mil( on copper area) | ||||||||
Base copper 1.43 oz: 4mil(Green), 5.5mil(Other color) , 6mil(Black), 8mil( on copper area) | ||||||||
Base copper 2 oz-4 oz: 6mil, 8mil( on copper area) | ||||||||
15 | Surface Treatment | Lead free | Flash gold(electroplated gold)、ENIG、Hard gold、Flash gold、HASL Lead free、OSP、ENEPIG、Soft gold、Immersion silver、Immersion Tin、ENIG+OSP,ENIG+Gold finger,Flash gold(electroplated gold)+Gold finger,Immersion silver+Gold finger,Immersion Tin+Gold finge | |||||
Leaded | Leaded HASL | |||||||
Aspect ratio | 10:1(HASL Lead free、HASL Lead、ENIG、Immersion Tin、Immersion silver、ENEPIG);8:1(OSP) | |||||||
Max finished size | HASL Lead 22″*39″;HASL Lead free 22″*24″;Flash gold 24″*24″;Hard gold 24″*28″;ENIG 21″*27″;Flash gold(electroplated gold) 21″*48″;Immersion Tin 16″*21″;Immersion silver 16″*18″;OSP 24″*40″; | |||||||
Min finished size | HASL Lead 5″*6″;HASL Lead free 10″*10″;Flash gold 12″*16″;Hard gold 3″*3″;Flash gold(electroplated gold) 8″*10″;Immersion Tin 2″*4″;Immersion silver 2″*4″;OSP 2″*2″; | |||||||
PCB thickness | HASL Lead 0.6-4.0mm;HASL Lead free 0.6-4.0mm;Flash gold 1.0-3.2mm;Hard gold 0.1-5.0mm;ENIG 0.2-7.0mm;Flash gold(electroplated gold) 0.15-5.0mm;Immersion Tin 0.4-5.0mm;Immersion silver 0.4-5.0mm;OSP 0.2-6.0mm | |||||||
Max high to gold finger | 1.5inch | |||||||
Min space between gold fingers | 6mil | |||||||
Min block space to gold fingers | 7.5mil | |||||||
16 | V-Cutting | Panel Size | 500mm X 622 mm ( max. ) | 500mm X 800 mm ( max. ) | ||||
Board Thickness | 0.50 mm (20mil) min. | 0.30 mm (12mil) min. | ||||||
Remain Thickness | 1/3 board thickness | 0.40 +/-0.10mm( 16+/-4 mil ) | ||||||
Tolerance | ±0.13 mm(5mil) | ±0.1 mm(4mil) | ||||||
Groove Width | 0.50 mm (20mil) max. | 0.38 mm (15mil) max. | ||||||
Groove to Groove | 20 mm (787mil) min. | 10 mm (394mil) min. | ||||||
Groove to Trace | 0.45 mm(18mil) min. | 0.38 mm(15mil) min. | ||||||
17 | Slot | Slot size tol.L≥2W | PTH Slot: L:+/-0.13(5mil) W:+/-0.08(3mil) | PTH Slot: L:+/-0.10(4mil) W:+/-0.05(2mil) | ||||
NPTH slot(mm) L+/-0.10 (4mil) W:+/-0.05(2mil) | NPTH slot(mm) L:+/-0.08 (3mil) W:+/-0.05(2mil) | |||||||
18 | Min Spacing from hole edge to hole edge | 0.30-1.60 (Hole Diameter) | 0.15mm(6mil) | 0.10mm(4mil) | ||||
1.61-6.50 (Hole Diameter) | 0.15mm(6mil) | 0.13mm(5mil) | ||||||
19 | Min spacing between hole edge to circuitry pattern | PTH hole: 0.20mm(8mil) | PTH hole: 0.13mm(5mil) | |||||
NPTH hole: 0.18mm(7mil) | NPTH hole: 0.10mm(4mil) | |||||||
20 | Image transfer Registration tol | Circuit pattern vs.index hole | 0.10(4mil) | 0.08(3mil) | ||||
Circuit pattern vs.2nd drill hole | 0.15(6mil) | 0.10(4mil) | ||||||
21 | Registration tolerance of front/back image | 0.075mm(3mil) | 0.05mm(2mil) | |||||
22 | Multilayers | Layer-layer misregistration | 4layers: | 0.15mm(6mil)max. | 4layers: | 0.10mm(4mil) max. | ||
6layers: | 0.20mm(8mil)max. | 6layers: | 0.13mm(5mil) max. | |||||
8layers: | 0.25mm(10mil)max. | 8layers: | 0.15mm(6mil) max. | |||||
Min. Spacing from Hole Edge to Innerlayer Pattern | 0.225mm(9mil) | 0.15mm(6mil) | ||||||
Min.Spacing from Outline to Innerlayer Pattern | 0.38mm(15mil) | 0.225mm(9mil) | ||||||
Min. board thickness | 4layers:0.30mm(12mil) | 4layers:0.20mm(8mil) | ||||||
6layers:0.60mm(24mil) | 6layers:0.50mm(20mil) | |||||||
8layers:1.0mm(40mil) | 8layers:0.75mm(30mil) | |||||||
Board thickness tolerance | 4layers:+/-0.13mm(5mil) | 4layers:+/-0.10mm(4mil) | ||||||
6layers:+/-0.15mm(6mil) | 6layers:+/-0.13mm(5mil) | |||||||
8-12 layers:+/-0.20mm (8mil) | 8-12 layers:+/-0.15mm (6mil) | |||||||
23 | Insulation Resistance | 10KΩ~20MΩ(typical:5MΩ) | ||||||
24 | Conductivity | <50Ω(typical:25Ω) | ||||||
25 | Test voltage | 250V | ||||||
26 | Impedance control | ±5ohm(<50ohm), ±10%(≥50ohm) |
PCBTok offers flexible shipping methods for our customers, you may choose from one of the methods below.
1. DHL
DHL offers international express services in over 220 countries.
DHL partners with PCBTok and offers very competitive rates to customers of PCBTok.
It normally takes 3-7 business days for the package to be delivered around the world.
2. UPS
UPS gets the facts and figures about the world’s largest package delivery company and one of the leading global providers of specialized transportation and logistics services.
It normally takes 3-7 business days to deliver a package to most of the addresses in the world.
3. TNT
TNT has 56,000 employees in 61 countries.
It takes 4-9 business days to deliver the packages to the hands
of our customers.
4. FedEx
FedEx offers delivery solutions for customers around the world.
It takes 4-7 business days to deliver the packages to the hands
of our customers.
5. Air, Sea/Air, and Sea
If your order is of large volume with PCBTok, you can also choose
to ship via air, sea/air combined, and sea when necessary.
Please contact your sales representative for shipping solutions.
Note: if you need others, please contact your sales representative for shipping solutions.
You can use the following payment methods:
Telegraphic Transfer(TT): A telegraphic transfer (TT) is an electronic method of transferring funds utilized primarily for overseas wire transactions. It’s very convenient to transfer.
Bank/Wire transfer: To pay by wire transfer using your bank account, you need to visit your nearest bank branch with the wire transfer information. Your payment will be completed 3-5 business days after you have finished the money transfer.
Paypal: Pay easily, fast and secure with PayPal. many other credit and debit cards via PayPal.
Credit Card: You can pay with a credit card: Visa, Visa Electron, MasterCard, Maestro.
Related Products
The process of running a PCB in Solidworks is simple. In order to set up Solidworks PCB Services, we have the following steps:
- To begin, launch the Solidworks Installation Manager.
- Secondly, choose Server Products from the Welcome screen.
- Thirdly, select Solidworks Install PCB Services on this machine and press Next.
- After then, click Next after adhering to the system’s cautions.
- Fifth, on the overview page, either admit the default configuration or hit “Modify” to change the elements.
- Finally, press Install Now after agreeing to the terms of the Solidworks License Agreement.