PCBTok’s Error-Free Taconic RF-35TC PCB
The Taconic RF-35TC is a high-quality, low-cost PCB that fits in any environment. It’s durable, reliable, and easy to use. And with PCBTok, you can get your Taconic RF-35TC PCB without having to worry about errors or omissions!
- Sufficient raw material in stock to support your orders
- No minimum order quantity for your new order
- 7/24 sales and engineering tech support
- Payment term is very flexible depending on your order
Supreme Taconic RF-35TCs from PCBTok
What’s the best way to make your circuit board more efficient? Add more hotness!
We’re talking about RF-35TC, a material that will keep your circuit boards at their peak performance. This innovative material offers a low dissipation factor with high thermal conductivity. It’s best suited for high-power applications where every 1/10th of a dB is critical and the PCB substrate is expected to diffuse heat away from both transmission lines and surface mount components such as transistors or capacitors.
The best part? It’s PTFE based, ceramic-filled fiberglass substrate that won’t oxidize, yellow or show upward drift in dielectric constant and dissipation factor like its synthetic rubber (hydrocarbon) competitors.
So if you want to get more out of your circuit boards—and your clients—consider using this revolutionary material!
You’ll be able to rely on PCBTok’s Taconic RF-35TC to diffuse heat away from both transmission lines and surface mount components like transistors or capacitors with ease, so you can focus on what’s important: your project’s success.
Taconic RF-35TC by Test Method
The test for its Dielectric Breakdown is a method to determine the resistivity of insulating materials when exposed to a high temperature and high voltage load.
Taconic RF-35TC for its Dielectric Strength. This test is performed to determine the dielectric strength of the pipework from the drawing or specification.
The tensile strength is determined after the material passes passing cut gauge and breaks on rigidity.
This test samples the flexural strength specifically designed to provide the user with a means for evaluating the flexural strength of Taconic RF-35TC.
Dimensional stability test to determine if PCB maintains its dimensions in a stable manner over time at elevated temperatures.
This test is for the density of Taconic RF-35TC. Density is the mass per unit volume of a substance, and it measures how heavy a material is.
Taconic RF-35TC By Thickness (5)
Taconic RF-35TC by Sheet Size (5)
Taconic RF-35TC Benefits

PCBTok can offer 24h online support for you. When you have any PCB-related questions, please feel free to get in touch.

PCBTok can build your PCB prototypes quickly. We also provide 24 hour production for quick-turn PCBs at our facility.

We often ship goods by international forwarders such as UPS, DHL, and FedEx. If they are urgent, we use priority express service.

PCBTok has passed ISO9001 and 14001, and also has USA and Canada UL certifications. We strictly follow IPC class 2 or class 3 standards for our products.
PCBTok’s Taconic RF-35TC Thermal Conductivity Properties
The thermal conductivity of a material is an important factor in electronics applications, especially when it comes to heat management. PCBs can be used to reduce the amount of heat that needs to be dissipated from components, and they can also be used as heat sinks for passive cooling. When you need to determine how well a particular material will perform in your application, it’s important to know how much thermal energy can be transferred through it.
Taconic RF-35TC has a higher thermal conductivity. The thermal conductivity of Taconic RF-35TC is 35 W/mK, compared to 25W/mK in standard FR-4. By increasing the thermal conductivity, you can reduce your overall system power dissipation and increase the operating temperature of your circuit board.

Maximize Device Capabilities with PCBTok’s Taconic RF-35TC
PCBTok’s Taconic RF-35TC is a high-performance, high-reliability, cost-effective radio frequency (RF) PCB that is well suited for many applications. This PCB can be used as a general-purpose RF switch in many applications such as cellular base stations, satellite communications, point-to-point microwave links, and many more applications.
The Taconic RF-35TC is an electronic PCB that can be used to amplify the signal of a device. This can allow for a more reliable connection, especially when there is interference from other devices or materials. The Taconic RF-35TC is also a small PCB to be mounted on various surfaces and can handle up to 30 watts of power.
If you are looking for a way to maximize your device’s capabilities, consider using the Taconic RF-35TC in your next project!
PCBTok | Reliable and Dependable Taconic RF-35TC Fabricator
PCBTok is a reliable and dependable Taconic RF-35TC fabricator. We’re committed to building our business on the backs of hardworking, talented people who are passionate about their work. We believe in giving back to the community, so we make sure that our customers have what they need to be happy at work and enjoy coming back every day.
Our Taconic RF-35TC are made by professional engineers with years of experience in the field and they are well trained to do their job. We offer you high-quality products at low prices so that you can enjoy our services without worrying about your budget restrictions!

Things You Should Know About PCBTok’s Taconic RF-35TC


PCBTok’s Taconic RF-35TC is a thermally conductive low-loss laminate that is used in the manufacture of printed circuit boards. It is made from a special resin and filler which makes it resistant to heat and electrical noise, as well as having low dielectric loss.
PCBTok’s Taconic RF-35TC has a very high thermal conductivity, making it ideal for use in high-frequency circuits. The material is available in customizable thicknesses: from 2 mils to 60 mils. It can be used in both surface mount and through-hole applications.
The RF-35TC also has good mechanical strength and flexibility, which makes it easy to use with other materials such as FR4 glass epoxy boards or other types of composites made from plastic materials like polyimide films or tapes.
Taconic RF-35TC Fabrication
The Taconic RF-35TC is a rigid, high-performance, flexible PCB material in a variety of thicknesses from 2mils to 60 mils. The material is made from carbon fiber and epoxy resin, with a copper foil laminate on one side and an aluminum foil laminate on the other. The result is a composite material that has excellent electrical performance and thermal stability with a low dielectric constant. This makes it ideal for applications in aerospace, defense, and communications industries.
Taconic RF-35TC comes with an epoxy coating that protects the PCB from corrosion, abrasion, and other forms of damage. The coating also makes this product suitable for use in environments where there are high levels of moisture or humidity present.
PCBTok’s Taconic RF-35TC is a high-quality, high-performance PCB that has been tested and validated to meet the rigorous requirements of international IPC standards. Our PCBs are manufactured in a facility with ISO 9001:2008 certification and RoHS compliance. All of our processes are managed by state-of-the-art software systems that ensure consistent quality across all of our manufacturing facilities.
PCBTok Taconic RF-35TC meets international IPC Standards and is also willing to match customer standards. Taconic RF-35TC is designed for high quality, cost-effectiveness, low insertion loss, low return loss, and high-reliability PCB. We also offer custom-made Taconic RF-35TC, so if you have a special requirement or need for your product, we can help you meet your needs.
OEM & ODM Taconic RF-35TC Applications
The Taconic RF-35TC is a low-loss antenna feedsystem. It features a low, Z-Loss design for use in high power applications, as well as antenna connector that fits most standard antennas.
The Taconic RF-35TC for Satellites is designed for direct integration into your satellite system, allowing for consistent signal quality and easy installation by the installer.
The Taconic RF-35TC for Filters are used for filtration of different refractive indices which significantly reduce self-absorption of the energy and the leakage of unwanted energy.
Taconic RF-35TC used to measure the gap between two parts, or to expand or retract a fastener size. This tool has been precision ground and hardened, and it is also RoHS compliant.
The Taconic RF-35TC is designed to provide high quality and reliable performance. It is a high performance RF power amplifier that works with many different types of portable or mobile radios.
Taconic RF-35TC Production Details As Following Up
- Production Facility
- PCB Capabilities
- Shipping Methods
- Payment Methods
- Send Us Inquiry
NO | Item | Technical Specification | ||||||
Standard | Advanced | |||||||
1 | Layer Count | 1-20 layers | 22-40 layer | |||||
2 | Base Material | KB、Shengyi、ShengyiSF305、FR408、FR408HR、IS410、FR406、GETEK、370HR、IT180A、Rogers4350、Rogers400、PTFE Laminates(Rogers series、Taconic series、Arlon series、Nelco series)、Rogers/Taconic/Arlon/Nelco laminate with FR-4 material(including partial Ro4350B hybrid laminating with FR-4) | ||||||
3 | PCB Type | Rigid PCB/FPC/Flex-Rigid | Backplane、HDI、High multi-layer blind&buried PCB、Embedded Capacitance、Embedded resistance board 、Heavy copper power PCB、Backdrill. | |||||
4 | Lamination type | Blind&buried via type | Mechanical blind&burried vias with less than 3 times laminating | Mechanical blind&burried vias with less than 2 times laminating | ||||
HDI PCB | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | 1+n+1,1+1+n+1+1,2+n+2,3+n+3(n buried vias≤0.3mm),Laser blind via can be filling plating | ||||||
5 | Finished Board Thickness | 0.2-3.2mm | 3.4-7mm | |||||
6 | Minimum Core Thickness | 0.15mm(6mil) | 0.1mm(4mil) | |||||
7 | Copper Thickness | Min. 1/2 OZ, Max. 4 OZ | Min. 1/3 OZ, Max. 10 OZ | |||||
8 | PTH Wall | 20um(0.8mil) | 25um(1mil) | |||||
9 | Maximum Board Size | 500*600mm(19”*23”) | 1100*500mm(43”*19”) | |||||
10 | Hole | Min laser drilling size | 4mil | 4mil | ||||
Max laser drilling size | 6mil | 6mil | ||||||
Max aspect ratio for Hole plate | 10:1(hole diameter>8mil) | 20:1 | ||||||
Max aspect ratio for laser via filling plating | 0.9:1(Depth included copper thickness) | 1:1(Depth included copper thickness) | ||||||
Max aspect ratio for mechanical depth- control drilling board(Blind hole drilling depth/blind hole size) |
0.8:1(drilling tool size≥10mil) | 1.3:1(drilling tool size≤8mil),1.15:1(drilling tool size≥10mil) | ||||||
Min. depth of Mechanical depth-control(back drill) | 8mil | 8mil | ||||||
Min gap between hole wall and conductor (None blind and buried via PCB) |
7mil(≤8L),9mil(10-14L),10mil(>14L) | 5.5mil(≤8L),6.5mil(10-14L),7mil(>14L) | ||||||
Min gap between hole wall conductor (Blind and buried via PCB) | 8mil(1 times laminating),10mil(2 times laminating), 12mil(3 times laminating) | 7mil(1 time laminating), 8mil(2 times laminating), 9mil(3 times laminating) | ||||||
Min gab between hole wall conductor(Laser blind hole buried via PCB) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | ||||||
Min space between laser holes and conductor | 6mil | 5mil | ||||||
Min space between hole walls in different net | 10mil | 10mil | ||||||
Min space between hole walls in the same net | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | 6mil(thru-hole& laser hole PCB),10mil(Mechanical blind&buried PCB) | ||||||
Min space bwteen NPTH hole walls | 8mil | 8mil | ||||||
Hole location tolerance | ±2mil | ±2mil | ||||||
NPTH tolerance | ±2mil | ±2mil | ||||||
Pressfit holes tolerance | ±2mil | ±2mil | ||||||
Countersink depth tolerance | ±6mil | ±6mil | ||||||
Countersink hole size tolerance | ±6mil | ±6mil | ||||||
11 | Pad(ring) | Min Pad size for laser drillings | 10mil(for 4mil laser via),11mil(for 5mil laser via) | 10mil(for 4mil laser via),11mil(for 5mil laser via) | ||||
Min Pad size for mechanical drillings | 16mil(8mil drillings) | 16mil(8mil drillings) | ||||||
Min BGA pad size | HASL:10mil, LF HASL:12mil, other surface technics are 10mil(7mil is ok for flash gold) | HASL:10mil, LF HASL:12mil, other surface technics are 7mi | ||||||
Pad size tolerance(BGA) | ±1.5mil(pad size≤10mil);±15%(pad size>10mil) | ±1.2mil(pad size≤12mil);±10%(pad size≥12mil) | ||||||
12 | Width/Space | Internal Layer | 1/2OZ:3/3mil | 1/2OZ:3/3mil | ||||
1OZ: 3/4mil | 1OZ: 3/4mil | |||||||
2OZ: 4/5.5mil | 2OZ: 4/5mil | |||||||
3OZ: 5/8mil | 3OZ: 5/8mil | |||||||
4OZ: 6/11mil | 4OZ: 6/11mil | |||||||
5OZ: 7/14mil | 5OZ: 7/13.5mil | |||||||
6OZ: 8/16mil | 6OZ: 8/15mil | |||||||
7OZ: 9/19mil | 7OZ: 9/18mil | |||||||
8OZ: 10/22mil | 8OZ: 10/21mil | |||||||
9OZ: 11/25mil | 9OZ: 11/24mil | |||||||
10OZ: 12/28mil | 10OZ: 12/27mil | |||||||
External Layer | 1/3OZ:3.5/4mil | 1/3OZ:3/3mil | ||||||
1/2OZ:3.9/4.5mil | 1/2OZ:3.5/3.5mil | |||||||
1OZ: 4.8/5mil | 1OZ: 4.5/5mil | |||||||
1.43OZ(positive):4.5/7 | 1.43OZ(positive):4.5/6 | |||||||
1.43OZ(negative ):5/8 | 1.43OZ(negative ):5/7 | |||||||
2OZ: 6/8mil | 2OZ: 6/7mil | |||||||
3OZ: 6/12mil | 3OZ: 6/10mil | |||||||
4OZ: 7.5/15mil | 4OZ: 7.5/13mil | |||||||
5OZ: 9/18mil | 5OZ: 9/16mil | |||||||
6OZ: 10/21mil | 6OZ: 10/19mil | |||||||
7OZ: 11/25mil | 7OZ: 11/22mil | |||||||
8OZ: 12/29mil | 8OZ: 12/26mil | |||||||
9OZ: 13/33mil | 9OZ: 13/30mil | |||||||
10OZ: 14/38mil | 10OZ: 14/35mil | |||||||
13 | Dimension Tolerance | Hole Position | 0.08 ( 3 mils) | |||||
Conductor Width(W) | 20% Deviation of Master A/W |
1mil Deviation of Master A/W |
||||||
Outline Dimension | 0.15 mm ( 6 mils) | 0.10 mm ( 4 mils) | ||||||
Conductors & Outline ( C – O ) |
0.15 mm ( 6 mils) | 0.13 mm ( 5 mils) | ||||||
Warp and Twist | 0.75% | 0.50% | ||||||
14 | Solder Mask | Max drilling tool size for via filled with Soldermask (single side) | 35.4mil | 35.4mil | ||||
Soldermask color | Green, Black, Blue, Red, White, Yellow,Purple matte/glossy | |||||||
Silkscreen color | White, Black,Blue,Yellow | |||||||
Max hole size for via filled with Blue glue aluminium | 197mil | 197mil | ||||||
Finish hole size for via filled with resin | 4-25.4mil | 4-25.4mil | ||||||
Max aspect ratio for via filled with resin board | 8:1 | 12:1 | ||||||
Min width of soldermask bridge | Base copper≤0.5 oz、Immersion Tin: 7.5mil(Black), 5.5mil(Other color) , 8mil( on copper area) | |||||||
Base copper≤0.5 oz、Finish treatment not Immersion Tin : 5.5 mil(Black,extremity 5mil), 4mil(Other color,extremity 3.5mil) , 8mil( on copper area |
||||||||
Base coppe 1 oz: 4mil(Green), 5mil(Other color) , 5.5mil(Black,extremity 5mil),8mil( on copper area) | ||||||||
Base copper 1.43 oz: 4mil(Green), 5.5mil(Other color) , 6mil(Black), 8mil( on copper area) | ||||||||
Base copper 2 oz-4 oz: 6mil, 8mil( on copper area) | ||||||||
15 | Surface Treatment | Lead free | Flash gold(electroplated gold)、ENIG、Hard gold、Flash gold、HASL Lead free、OSP、ENEPIG、Soft gold、Immersion silver、Immersion Tin、ENIG+OSP,ENIG+Gold finger,Flash gold(electroplated gold)+Gold finger,Immersion silver+Gold finger,Immersion Tin+Gold finge | |||||
Leaded | Leaded HASL | |||||||
Aspect ratio | 10:1(HASL Lead free、HASL Lead、ENIG、Immersion Tin、Immersion silver、ENEPIG);8:1(OSP) | |||||||
Max finished size | HASL Lead 22″*39″;HASL Lead free 22″*24″;Flash gold 24″*24″;Hard gold 24″*28″;ENIG 21″*27″;Flash gold(electroplated gold) 21″*48″;Immersion Tin 16″*21″;Immersion silver 16″*18″;OSP 24″*40″; | |||||||
Min finished size | HASL Lead 5″*6″;HASL Lead free 10″*10″;Flash gold 12″*16″;Hard gold 3″*3″;Flash gold(electroplated gold) 8″*10″;Immersion Tin 2″*4″;Immersion silver 2″*4″;OSP 2″*2″; | |||||||
PCB thickness | HASL Lead 0.6-4.0mm;HASL Lead free 0.6-4.0mm;Flash gold 1.0-3.2mm;Hard gold 0.1-5.0mm;ENIG 0.2-7.0mm;Flash gold(electroplated gold) 0.15-5.0mm;Immersion Tin 0.4-5.0mm;Immersion silver 0.4-5.0mm;OSP 0.2-6.0mm | |||||||
Max high to gold finger | 1.5inch | |||||||
Min space between gold fingers | 6mil | |||||||
Min block space to gold fingers | 7.5mil | |||||||
16 | V-Cutting | Panel Size | 500mm X 622 mm ( max. ) | 500mm X 800 mm ( max. ) | ||||
Board Thickness | 0.50 mm (20mil) min. | 0.30 mm (12mil) min. | ||||||
Remain Thickness | 1/3 board thickness | 0.40 +/-0.10mm( 16+/-4 mil ) | ||||||
Tolerance | ±0.13 mm(5mil) | ±0.1 mm(4mil) | ||||||
Groove Width | 0.50 mm (20mil) max. | 0.38 mm (15mil) max. | ||||||
Groove to Groove | 20 mm (787mil) min. | 10 mm (394mil) min. | ||||||
Groove to Trace | 0.45 mm(18mil) min. | 0.38 mm(15mil) min. | ||||||
17 | Slot | Slot size tol.L≥2W | PTH Slot: L:+/-0.13(5mil) W:+/-0.08(3mil) | PTH Slot: L:+/-0.10(4mil) W:+/-0.05(2mil) | ||||
NPTH slot(mm) L+/-0.10 (4mil) W:+/-0.05(2mil) | NPTH slot(mm) L:+/-0.08 (3mil) W:+/-0.05(2mil) | |||||||
18 | Min Spacing from hole edge to hole edge | 0.30-1.60 (Hole Diameter) | 0.15mm(6mil) | 0.10mm(4mil) | ||||
1.61-6.50 (Hole Diameter) | 0.15mm(6mil) | 0.13mm(5mil) | ||||||
19 | Min spacing between hole edge to circuitry pattern | PTH hole: 0.20mm(8mil) | PTH hole: 0.13mm(5mil) | |||||
NPTH hole: 0.18mm(7mil) | NPTH hole: 0.10mm(4mil) | |||||||
20 | Image transfer Registration tol | Circuit pattern vs.index hole | 0.10(4mil) | 0.08(3mil) | ||||
Circuit pattern vs.2nd drill hole | 0.15(6mil) | 0.10(4mil) | ||||||
21 | Registration tolerance of front/back image | 0.075mm(3mil) | 0.05mm(2mil) | |||||
22 | Multilayers | Layer-layer misregistration | 4layers: | 0.15mm(6mil)max. | 4layers: | 0.10mm(4mil) max. | ||
6layers: | 0.20mm(8mil)max. | 6layers: | 0.13mm(5mil) max. | |||||
8layers: | 0.25mm(10mil)max. | 8layers: | 0.15mm(6mil) max. | |||||
Min. Spacing from Hole Edge to Innerlayer Pattern | 0.225mm(9mil) | 0.15mm(6mil) | ||||||
Min.Spacing from Outline to Innerlayer Pattern | 0.38mm(15mil) | 0.225mm(9mil) | ||||||
Min. board thickness | 4layers:0.30mm(12mil) | 4layers:0.20mm(8mil) | ||||||
6layers:0.60mm(24mil) | 6layers:0.50mm(20mil) | |||||||
8layers:1.0mm(40mil) | 8layers:0.75mm(30mil) | |||||||
Board thickness tolerance | 4layers:+/-0.13mm(5mil) | 4layers:+/-0.10mm(4mil) | ||||||
6layers:+/-0.15mm(6mil) | 6layers:+/-0.13mm(5mil) | |||||||
8-12 layers:+/-0.20mm (8mil) | 8-12 layers:+/-0.15mm (6mil) | |||||||
23 | Insulation Resistance | 10KΩ~20MΩ(typical:5MΩ) | ||||||
24 | Conductivity | <50Ω(typical:25Ω) | ||||||
25 | Test voltage | 250V | ||||||
26 | Impedance control | ±5ohm(<50ohm), ±10%(≥50ohm) |
PCBTok offers flexible shipping methods for our customers, you may choose from one of the methods below.
1. DHL
DHL offers international express services in over 220 countries.
DHL partners with PCBTok and offers very competitive rates to customers of PCBTok.
It normally takes 3-7 business days for the package to be delivered around the world.
2. UPS
UPS gets the facts and figures about the world’s largest package delivery company and one of the leading global providers of specialized transportation and logistics services.
It normally takes 3-7 business days to deliver a package to most of the addresses in the world.
3. TNT
TNT has 56,000 employees in 61 countries.
It takes 4-9 business days to deliver the packages to the hands
of our customers.
4. FedEx
FedEx offers delivery solutions for customers around the world.
It takes 4-7 business days to deliver the packages to the hands
of our customers.
5. Air, Sea/Air, and Sea
If your order is of large volume with PCBTok, you can also choose
to ship via air, sea/air combined, and sea when necessary.
Please contact your sales representative for shipping solutions.
Note: if you need others, please contact your sales representative for shipping solutions.
You can use the following payment methods:
Telegraphic Transfer(TT): A telegraphic transfer (TT) is an electronic method of transferring funds utilized primarily for overseas wire transactions. It’s very convenient to transfer.
Bank/Wire transfer: To pay by wire transfer using your bank account, you need to visit your nearest bank branch with the wire transfer information. Your payment will be completed 3-5 business days after you have finished the money transfer.
Paypal: Pay easily, fast and secure with PayPal. many other credit and debit cards via PayPal.
Credit Card: You can pay with a credit card: Visa, Visa Electron, MasterCard, Maestro.